Paper Review — Strided Transformer (TMM 2022)

Strided Transformer is a monocular 3D pose estimation model which lifts a long sequence of 2D joint locations to a single 3D pose.

Paper Review — Strided Transformer (TMM 2022)
  • Strided Transformer is a monocular 3D pose estimation model which simply and effectively lifts a long sequence of 2D joint locations to a single 3D pose.
  • Vanilla Transformer Encoder (VTE) is used to model long-range dependencies of 2D pose sequences.
  • Strided Transformer Encoder (STE) is a modified VTE and STE layers contains strided convolutions to progressively shrink the sequence length and aggregate information from local contexts, which reduces the redundancy of the sequence.
class Model(nn.Module): 
    def __init__(self, args): 
        super().__init__()
self.encoder = nn.Sequential( 
            nn.Conv1d(2*args.n_joints, args.channel, kernel_size=1), 
            nn.BatchNorm1d(args.channel, momentum=0.1), 
            nn.ReLU(inplace=True), 
            nn.Dropout(0.25) 
        )
self.Transformer = [Transformer](<https://www.notion.so/381239ee9a904448a68954fe1752c9b2>)(args.layers, args.channel, args.d_hid, length=args.frames) 
        self.Transformer_reduce = Transformer_reduce(len(args.stride_num), args.channel, args.d_hid, \\ 
            length=args.frames, stride_num=args.stride_num) 
         
        self.fcn = nn.Sequential( 
            nn.BatchNorm1d(args.channel, momentum=0.1), 
            nn.Conv1d(args.channel, 3*args.out_joints, kernel_size=1) 
        )
self.fcn_1 = nn.Sequential( 
            nn.BatchNorm1d(args.channel, momentum=0.1), 
            nn.Conv1d(args.channel, 3*args.out_joints, kernel_size=1) 
        )
def forward(self, x): 
		        B, F, J, C = x.shape 
		        x = rearrange(x, 'b f j c -> b (j c) f').contiguous() 
		 
		        x = self.encoder(x)  
		        x = x.permute(0, 2, 1).contiguous() 
		 
		        x = self.Transformer(x)  
		 
		        x_VTE = x 
		        x_VTE = x_VTE.permute(0, 2, 1).contiguous() 
		        x_VTE = self.fcn_1(x_VTE)  
		        x_VTE = rearrange(x_VTE, 'b (j c) f -> b f j c', j=J).contiguous() 
		 
		        x = self.Transformer_reduce(x)  
		         
		        x = x.permute(0, 2, 1).contiguous()  
		        x = self.fcn(x)  
		        x = rearrange(x, 'b (j c) f -> b f j c', j=J).contiguous()  
		         
		        return x, x_VTE

Strided Transformer network

Strided Transformer network contains a Vanilla Transformer Encoder (VTE) followed by a Strided Transformer Encoder (STE).

Vanilla Transformer Encoder

VTE is first used to model long-range information and is supervised by the full sequence scale to enforce temporal smoothness.

class Transformer(nn.Module): 
    def __init__(self, n_layers=3, d_model=256, d_ff=512, h=8, dropout=0.1, length=27): 
        super(Transformer, self).__init__()
self.pos_embedding = nn.Parameter(torch.randn(1, length, d_model)) 
        self.model = self.make_model(N=n_layers, d_model=d_model, d_ff=d_ff, h=h, dropout=dropout) 
                 
    def forward(self, x, mask=None): 
        x += self.pos_embedding
x = self.model(x, mask)
return x
def make_model(self, N=3, d_model=256, d_ff=512, h=8, dropout=0.1): 
        c = copy.deepcopy 
        attn = MultiHeadedAttention(h, d_model) 
        ff = PositionwiseFeedForward(d_model, d_ff, dropout) 
        model = Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N) 
        return model

Strided Transformer Encoder

STE is built upon Z, the outputs of VTE. The learnable position embeddings E with strided factor S are used because of the different sequence lengths.

class Transformer(nn.Module):    
    def __init__(self, n_layers=3, d_model=256, d_ff=512, h=8, length=27, stride_num=None, dropout=0.1): 
        super(Transformer, self).__init__()
self.length = length
self.stride_num = stride_num 
        self.model = self.make_model(N=n_layers, d_model=d_model, d_ff=d_ff, h=h, dropout=dropout, length = self.length)
def forward(self, x, mask=None): 
        x = self.model(x, mask)
return x
def make_model(self, N=3, d_model=256, d_ff=512, h=8, dropout=0.1, length=27): 
		# n : encoder layer 
		# d_ff : hidden units for both VTE and STE 
		# h : attention head
c = copy.deepcopy 
        attn = MultiHeadedAttention(h, d_model)
model_EncoderLayer = [] 
        for i in range(N): 
            ff = PositionwiseFeedForward(d_model, d_ff, dropout, i, self.stride_num) 
            model_EncoderLayer.append(EncoderLayer(d_model, c(attn), c(ff), dropout, self.stride_num, i))
model_EncoderLayer = nn.ModuleList(model_EncoderLayer)
model = Encoder(model_EncoderLayer, N, length, d_model) 
         
        return model

Multi-head self-attention

Each STE layer consists of a multi-head self-attention (MSA) and a convolutional feed-forward network(CFFN).

class MultiHeadedAttention(nn.Module): 
    def __init__(self, h, d_model, dropout=0.1): 
        super(MultiHeadedAttention, self).__init__() 
        assert d_model % h == 0 
        self.d_k = d_model // h  
        self.h = h 
        self.linears = clones(nn.Linear(d_model, d_model), 4) 
        self.attn = None 
        self.dropout = nn.Dropout(p=dropout) 
 
    def forward(self, query, key, value, mask=None): 
        if mask is not None: 
            mask = mask.unsqueeze(1) 
        nbatches = query.size(0) 
 
        query, key, value = [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) 
             for l, x in zip(self.linears, (query, key, value))] 
 
        x, self.attn = attention(query, key, value, mask=mask, 
                                 dropout=self.dropout) 
 
        x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k) 
        return self.linears[-1](x)

Convolutional feed-forward network

Fully-connected layers in FFN of VTE are replaced with strided convolutions.

class PositionwiseFeedForward(nn.Module): 
    def __init__(self, d_model, d_ff, dropout=0.1, number = -1, stride_num=-1): 
        super(PositionwiseFeedForward, self).__init__() 
        self.w_1 = nn.Conv1d(d_model, d_ff, kernel_size=1, stride=1) 
        self.w_2 = nn.Conv1d(d_ff, d_model, kernel_size=3, stride=stride_num[number], padding = 1) 
 
        self.gelu = nn.ReLU() 
        self.dropout = nn.Dropout(dropout) 
 
    def forward(self, x): 
        x = x.permute(0, 2, 1) 
        x = self.w_2(self.dropout(self.gelu(self.w_1(x)))) 
        x = x.permute(0, 2, 1) 
 
        return x

Full-to-Single Prediction

A full-to-single scheme refines the intermediate predictions to produce more accurate estimations rather than using a single component with a single output. The model is supervised at both full sequence scale and single target frame scale.

The below is a part of step module for training.

if opt.refine: 
    loss = mpjpe_cal(output_3D, out_target_single) 
else: 
    loss = mpjpe_cal(output_3D_VTE, out_target) + mpjpe_cal(output_3D, out_target_single) 
    N = input_2D.size(0) 
		loss_all['loss'].update(loss.detach().cpu().numpy() * N, N)

Experiments

The Strided Transformer achieves state-of-the-art results with fewer parameters on Human3.6M.

  • VTE identifies only important sequences that are close to the input frames and enforces temporal consistency across frames.
  • STE learns a specific representation from the input sequences using both past and future data. STE improves the representation ability to reach an optimal inference.

Thank you for reading!